Как выбрать бесшумный компьютер: пошаговая инструкция. Как я сделал абсолютно бесшумный компьютер Бесшумное охлаждение компьютера

Бесшумный игровой компьютер

Компьютеры серии SILENT разработаны экспертами HYPERPC для тех, кто хочет слышать только происходящее в виртуальном мире, не отвлекаясь на посторонние звуки. Специальные корпуса и комплектующие позволили сделать работу ПК практически бесшумной.

Бесшумные компьютеры

Самые тихие системные блоки

Ультратихие компьютеры Hyper Silent построены на базе специальных звукоизолированных корпусов, видеокарт с технологией бесшумной работы, безвентиляторных блоков питания и энергоэффективных процессоров, охлаждаемых тихими кулерами. Весь этот комплекс мер обеспечивает практически бесшумную работу даже при гейминге в играх со средними системными требованиями.

Специальные корпуса

Полная шумоизоляция - идеальная тишина!

Самые тихие и мощные ПК Применение специальных шумопоглощающих матераиалов внутри корпуса, а так же передовые инженерные решения в области оптимизации воздушного потока в условиях максимальной закрытости системы, обеспечивают существенное снижение уровня шума производимого системой охлаждения как самого корпуса, так и компонентов бесшумного компьютера. Специальные системы безвинтового крепления накопителей и приводов в существенной степени гасят шумы и вибрации связанные с работой этих комплектующих

Тихие видеокарты

Бесшумные видеокарты Asus STRIX и MSI GAMING

Высокая мощь при минимальном уровне шума В видеокартах серии STRIX и MSI GAMING реализована уникальная технология охлаждения, которая оставляет вентиляторы выключенными, пока процессор не нагреется до 65°С. При вычислительной мощности 10-й серии GeForce® GTX такой нагрев возможен только при высоких нагрузках. При средних нагрузках вентиляторы выключены, тепло отводится и рассеивается 10-миллиметровая металлическими трубками. Это решение не только дает возможность собрать по-настоящему бесшумный компьютер, но и значительно продляет срок службы вентиляторов. Еще одно преимущество – в корпус попадает меньше пыли.

Пассивные блоки питания

Пассивное охлаждение, полная тишина

Компьютер с пассивным охлаждением Безвентиляторные компьютеры собраны из энергоэффективных компонентов, которые оптимизируют процесс вычислений для снижения потребляемой мощности. Применение блоков питания с пассивным охлаждением способствует существенному снижению общего уровня шума системы, особенно в режимах высокой нагрузки. В серии Hyper Silent используются БП с высоким КПД по стандарту80 PLUS PLATINUM. Блоки питания Seasonic Platinum Fanless производятся по безвентиляторной технологии. Для ее реализации КПД блока был увеличен до 90%, а нагрев снижен. Тепло отводится алюминиевыми радиаторами. Для подключения компонентов предусмотрены отдельные разъемы, а допустимые отклонения электрических параметров не превышают 2%. За счет оптимизации работы блока и компонентов безвентиляторный компьютер потребляет меньше энергии по сравнению с обычным.

Шум компьютера утомляет и мешает сосредоточиться. Даже если вы привыкли к монотонному шуму, то возможно он будет докучать другим членам вашей семьи. Сделать компьютер бесшумным практически невозможно, но мы расскажем о том, как уменьшить шум вентиляторов, снизить вибрацию и свести на нет посторонние звуки в системном блоке.

Предисловие

Прежде, чем рассказать о причинах шума, дадим два совета касаемо размещения и ухода за ПК:

1. Не держите компьютер в жарком месте. Например, возле батареи, нагревателя или под прямым солнечным светом. В душном помещении охладительная система будет вынуждена работать на максимальных оборотах, что будет порождать шум.

2. Регулярно проводите чистку системного блока от пыли. И самое главное, о чём редко говорят, следите за чистотой в помещении. Тогда заниматься чисткой придётся реже.

Перечислим возможные источники шума в порядке убывания: от наиболее ощутимых к менее значительным.

Кулер процессора

Как правило, это самый главный нарушитель тишины. Если процессорный вентилятор загудел, не нужно пытаться его починить. После неудачного ремонта он может и вовсе остановиться. При этом процессор перегреется и может выйти из строя.

Во многих системных блоках кулеры на процессорах гудят не потому, что они вышли из строя, а из-за низкого качества. Такие шумят с момента покупки и, как правило, плохо охлаждают.

При выборе кулера CPU экономить точно не стоит. Следует приобрести вентилятор от серьёзных производителей. Мы рекомендуем Zalman. Купив качественный кулер с хорошим радиатором, вы потратите больше денег, но зато получите надёжность и тишину взамен.

Из нашей практики можем сказать, что после замены дешёвых кулеров с радиаторами на высококачественные температура процессора в состоянии простоя часто снижалась с 60-65 до 30-35 градусов Цельсия.

Кулер видеокарты

Заменить кулер на видеоадаптере бывает проблематично, если он фирменный (нестандартный). Здесь придётся подбирать максимально подходящий по габаритам и вкручивать его в старый радиатор. В продаже есть универсальные кулеры с комплектом крепежа разных размеров.

Если вы установили кулер на видеокарту, где его раньше не было (silencer) и подсоединили к разъёму питания на материнской плате, то можно понизить его обороты с помощью резистора или замены провода 12V на 5V.

Переходник с резистором для понижения оборотов кулера

Блок питания

Не смотря на то, что практически во всех моделях применяются 120-милиметровые вентиляторы (которые считаются более тихими, нежели 80 мм), блоки питания по фактору шума тоже варьируются в очень широких пределах. Одними из самых тихих и качественных считаются изделия Chieftec, Thermaltake, AeroCool. Но перед покупкой БП мы советуем внимательно изучить его технические характеристики и уточнить заявленный уровень шума в децибелах.

Дополнительное охлаждение корпуса — вдув или выдув

В дешёвых корпусах выдувной вентилятор может быть самым громким среди всех. И самое обидное, что от него часто больше раздражающих звуков, чем пользы. Если циркуляция воздуха в некачественном китайском корпусе происходит «как попало», то дополнительные кулеры ситуацию не особо исправят. Советуем отключить дополнительное охлаждение корпуса, сравнить разницу температур узлов до и после, и определиться, нужно ли это конкретно вашему системнику.

Дребезжание и вибрация

Дребезжать могут как сам корпус, так и радиаторы. В дешёвых корпусах тонкие кривые стенки и часто они неплотно прилегают. Лучше всего конечно же приобрести качественный корпус. Но если вы не хотите тратиться, можно попробовать решить проблему путём доработки «ящика». Осмотрите системный блок и попытайтесь выяснить источник дребезжания. Если дребезжит боковая крышка с тыльной стороны материнской платы, приклейте к ней подкладку из поролона или каучука.

Бывает также, что весь корпус вибрирует. Причиной часто бывает разбалансированный вентилятор процессора. Такого товарища нужно без вариантов заменить.

Охлаждение чипсета материнской платы

Универсальный вентилятор Titan для установки на чипсет или видеокарту

Вентилятор чипсета обычно не издаёт большого шума, за исключением ситуации, когда он вышел из строя. Здесь — та же мораль: если кулер выработал свой ресурс, то его лучше заменить. Смазка не принесет долгосрочного результата. Вы только угробите драгоценное время, но через несколько недель снова услышите этот ужасный рёв и треск.

Жёсткий диск

Шум винчестера не очень громкий, но раздражать способен не меньше. Наилучший вариант решения этой неприятности — это установка SSD. В нём нет механики и поэтому он работает бесшумно. В качестве бонуса вы получите ощутимое улучшение отклика системы. Так что в этом пункте, решение предельно простое. Были бы деньги на покупку твердотельного накопителя.

Если этот вариант вам не подходит, установите резиновые прокладки между крепежными болтами и корзиной корпуса. Сразу отметим, что обычно они не способны убрать резонанс полностью .

Ещё можно выкрутить жёсткий диск из корзины и положить на мягкую основу. Здесь важно, чтобы её материал и форма позволяли циркулировать воздуху под накопителем. В общем, это специфический бюджетный вариант. Но так можно устранить проблему резонанса от механики HDD по всему корпусу.

DVD+-RW / Bluray

Про привод оптических дисков упомянем сугубо символически. Во-первых, их уже довольно редко используют. А во-вторых, если дисковод работает, то не постоянно. Так что это наверняка не является такой уж проблемой. Тут можно посоветовать использовать флешки. Будет и тише, и быстрее.

Надеемся, эти советы помогут вам снизить уровень шума вентиляторов и свести на нет посторонние звуки в ПК.

February 18th, 2017

Тема построения тихого и холодного ПК является очень интересной и комплексной. И очень важной - от грамотного охлаждения компонентов в корпусе зависит срок их службы, а от шума - состояние нервов пользователя. Лично я, например, вообще никак не могу эффективно соображать, сидя рядом с воющим компом. О том, что надо бы как-то сделать компьютер потише, думать начинают обычно уже после его покупки и сборки; вопрос зачастую решается без проведения анализа, типа "надо просто вентилятор нормальный и кулер на проц побольше". Что почти никогда не дает желаемого результата.

Попробуем разобраться во всех нюансах.

Главное, что необходимо понимать: вопросы шума и охлаждения тесно связаны.

Далее рассматривается система на базе microATX-корпуса со стандартным расположением внутренних компонентов: блок питания внизу, забирает воздух из-под корпуса, выдувает его назад. Я глубоко убежден в том, что корпуса большего размера являются пережитком прошлого, или же должны использоваться для неких специальных задач. Нестандартные варианты типа Silverstone TJ11 , или Corsair Carbide 240 рассматривать не буду, это совсем другая история.

Что шумит в корпусе

Шумят, со всей очевидностью, все комплектующие, имеющие механические узлы, а именно:
1. Вентиляторы. Вентиляторы производят три различных вида шума: шум от вибрации, шум от подшипника и шум от потока воздуха.
a. Если вентилятор плохо сбалансирован, он вибрирует, эта вибрация передается на корпус, который также начинает вибрировать и издавать неприятные, обычно низкочастотные звуки, возникающие с небольшой периодичностью.
b. Использование некачественных подшипников (или вовсе их отсутствие) вызывает появление характерного стрекота или щелканья вентилятора во время работы.
c. Шум воздушного потока возникает в тот момент, когда сразу перед или сразу после вентилятора находится некое препятствие - кабели, плотная (в смысле оребрения) решетка радиатора и т.д. Достаточно поднести руку к вытяжному вентилятору на 1 см. и ближе, чтобы услышать характерный свист.

2. Магнитные жесткие диски. Которые HDD. Также производят два вида шума: шум от мотора и шум за счет вибрации корпуса диска.
a. Шум мотора (подшипников, привода, не важно) на слух определяется как ровный среднечастотный гул.
b. Шум от вибрации возникает от передачи колебаний корпуса HDD на элементы конструкции корпуса, как и в случае с вентиляторами. Только вот HDD сильно массивнее вентилятора, поэтому и вибрации дает ощутимо больше.
c. Шум от передвижения головок чтения-записи. Точнее, от работы актуатора головок. Возникает при интенсивных операциях чтения-записи, при снятии и помещении головок в парковочную зону. На слух ощущается как назойливый мерзотный треск.


Также частой проблемой является писк дросселей (он же "coil screaming" в зарубежной неформальной терминологии). Возникает обычно в следующих случаях:


  1. Дроссели видеокарты пищат, когда частота кадров переваливает далеко за 100. Например, на экране отображается меню игры, а синхронизация с разверткой монитора (VSYNC) отключена.

  2. Дроссели блоков питания пищат при очень низкой нагрузке. Особенно когда компьютер выключен, но подключение к электросети есть, как это обычно и бывает по ночам, например.

  3. Дроссели материнских плат пищат непредсказуемо, иногда под высокой нагрузкой, иногда без нее. То же самое относится к M.2-дискам.

Замечу, что данная проблема не является распространенной, а любой приличный магазин меняет комплектующие при обращении с подобной жалобой. Я сталкивался с этим в разрезе видеокарты, сам же счастливо её поменял. Никакой внятной статистики по данной проблеме нет, она встречается периодически, у всех производителей.

Итак, что может шуметь в корпусе и как конкретно может шуметь - разобрались.

Общие принципы

Теперь немного здравого смысла:


  1. Чтобы потоки воздуха внутри корпуса были эффективными, этим потокам воздуха ничто не должно мешать.

  2. Чтобы потоки воздуха эффективно охлаждали компоненты ПК, сами компоненты ПК должны быть такими, чтобы свое тепло они могли эффективно отдавать.

  3. Поскольку нагрузка на компоненты ПК меняется, то и воздушный поток, обеспечивающий их охлаждение, должен меняться в соответствии с.

Из этих предпосылок вытекают нижеследующие простые советы:

  1. Необходимо минимизировать количество компонентов, находящихся в корпусе.

  2. Необходимо минимизировать количество проводов, болтающихся в корпусе на пути прохождения воздушных потоков.

  3. Необходимо построить систему охлаждения так, чтобы её мощность легко масштабировалась.

  4. Необходимо минимизировать количество пыли, которая затягивается в корпус, т.к. пыль мешает эффективному отводу тепла и прохождению воздушных потоков через радиаторы, решетки и сетки.

Дальше - про критерии выбора компонентов для сборки. Рекомендации только в части охлаждения и тишины, благо по производительности и совместимости написано более чем достаточно.

Выбор компонентов - Корпус

Корпус разумно выбирать исходя из следующих соображений:


  1. Наличие антивибрационного покрытия стенок. Используется, например, в корпусах Fractal Design. Такое покрытие не просто блокирует звук, не давая ему выйти за пределы корпуса, но и утяжеляет корпусные панели, не давая им вибрировать. Эффективной в плане звукопоглощения оказывается и передняя дверца, которая снижает шум передних втяжных вентиляторов.

  2. Наличие как минимум одного посадочного места под вытяжной 140-мм вентилятор. И желательно - на верхней крышке. И минимум двух посадочных мест под 120-мм вентиляторы, работающие на вдув. Дальше будет пояснено, почему именно так.

  3. Противопылевые сетки на втяжных вентиляторах. Причем легко вынимающиеся и моющиеся. Противопылевые сетки имеют к вопросу шума и нагрева самое непосредственное отношение: как было сказано выше, попадающая в корпус пыль оседает на компонентах ПК, в том числе - на радиаторах, которые, в свою очередь, начинают плохо отдавать тепло. Ведь пыль очень плохо это самое тепло проводит.

Чистота внутри корпуса - залог эффективной работы системы охлаждения в целом.

Неправильный выбор - сетка вынимается сзади, c большой вероятностью корпус придется передвигать, чтобы её достать.

Правильный выбор - сетка вынимается спереди, для её очистки корпус не надо передвигать или переворачивать:

4. Развитая система укладки кабелей. Тут всё просто: корпус должен предоставлять возможность уложить кабели так, чтобы они не мешали воздуху проходить через корпусное пространство и радиаторы. В настоящий момент большая часть корпусов нижней и средней (и верхней, понятно, тоже) ценовой категории позволяет уложить почти все кабели за поддоном для материнской платы. Из особенно интересных решений я бы выделил корпуса Fractal Design Mini C:

У него поддон имеет "горб" справа, что позволяет не так сильно, как обычно, изгибать кабель питания материнской платы. За поддоном же крепятся и диски HDD и SSD.

5. Демпфирующая система креплений для HDD. Обычно реализована в виде салазок, к которым жесткие диски прикручиваются не напрямую, а через резиновые подкладки, что несколько гасит вибрации с корпусов HDD. На шум от мотора HDD такое решение не влияет никак, понятно.

Выбор компонентов - Материнская плата


  1. Массивные радиаторы на чипсете и элементах питания. Эти компоненты, особенно элементы питания, греются во время работы, и довольно сильно. Чем большей площади радиаторы на них стоят, тем эффективней они отдают тепло.

  2. Наличие минимум 4 разъёмов для подключения вентиляторов - 1 для процессора и 3 для корпусных вентиляторов.

  3. Поддержка M.2-дисков. И тут нас интересуют не скорости этих новомодных дисков, а тот факт, что для их подключения не требуется протягивать два дополнительных кабеля с питанием и данными.

Выбор компонентов - Память

  1. Низкопрофильная. Хотя такую DDR4 пока достать тяжело, она существует уже довольно давно . При использовании башенного процессорного кулера в стандартной ориентации память может частично перекрывать поток воздуха, который засасывается вентилятором. Чем ниже её профиль, тем меньше завихрений создается, тем лучше продувается пространство под процессорной башней.

Выбор компонентов - Блок питания (БП)

  1. Высокого класса. Желательно стандарта Silver или Gold. А еще лучше - Platinum или Titanium. Это косвенно определяет нагрев компонентов БП, чем КПД выше - тем нагрев меньше. Также с повышением класса БП уменьшается шанс нарваться на свистящие дроссели.

  2. Со 140 мм. кулером. Просто потому, что чем кулер больше, тем (по сравнению с кулером меньшего диаметра при одном и том же потоке воздуха) шумит он меньше.

  3. Модульный. Модульность бывает частичная и полная. В первом случае из блока питания вытаскиваются все кабели кроме идущего до материнской платы и (обычно) видеокарты, во втором случае вытаскивается вообще всё. Расчет очень простой - чем меньше бесполезных кабелей болтается в корпусе, тем эффективнее "работает" воздух внутри корпуса.

  4. С поддержкой гибридного режима охлаждения . Это когда вентилятор не крутится при отсутствии нагрузки или до повышения температуры на компонентах БП до определенного уровня. В состоянии системы без нагрузки это радикально влияет на шум, вибрацию, износ вентилятора, необходимость разбора БП для очистки от пыли, нагрев компонентов БП вследствие попадания пыли внутрь БП.

Конкретные модели: http://www.thg.ru/howto/luchshyi_blok_pitaniya/ Есть деньги - берите Seasonic SSR-650TD.

Выбор компонентов - Процессорный кулер


  1. Башенного типа. Просто потому, что такая конструкция позволяет максимизировать площадь ребер радиатора.

  2. С редким оребрением. То есть расстояние между ребрами должно быть большим - это радикально влияет на силу, с которой необходимо дуть вентилятору, чтобы протолкнуть воздух между ребрами. Чем эта сила меньше, тем медленнее крутится процессорный вентилятор, тем тише свист от потока воздуха, проходящего через ребра радиатора.

  3. С наибольшей возможной (в рамках выбранного корпуса) площадью поверхности. Фактически, чем больше - тем лучше.

  4. Желательно с возможностью изменения высоты установки вентилятора. То есть с таким креплением вентилятора, чтобы его можно было чуть-чуть поднять или опустить. Это позволяет оптимально расположить вентилятор на башне и организовать дополнительный обдув компонентов материнской платы вблизи процессорного сокета (того же M.2-диска на некоторых материнках) или под самой башней.

Тут остановлюсь еще на одном важном моменте: извращения типа испарительных камер, термотрубок с прямым контактом с процессором, элементы пельтье, фигурные пластиковые кожухи не работают! То есть никак не влияют на эффективность охлаждения. Важно количество термотрубок, количество пластин, их площадь и качество спайки пластин и термотрубок. Чудовищные конструкты типа MasterLiquid Maker или Titan Fenrir Siberia также бесполезны.

5. С оребрением, находящимся на одном уровне с процессорным сокетом. Не знаю, как пояснить лучше. Имеется в виду вот это:

Дело в том, что процессорный кулер рекомендуется устанавливать не как обычно, а так, чтобы поток воздуха от процессорного вентилятора был направлен вертикально вверх. А поскольку сразу под процессорным кулером стоит видеокарта, в первом слоте, а материнка небольшая, то понадобится место, чтобы между видеокартой и процессорным радиатором всунуть кулер. Отсюда - такое требование.

Конкретные модели: серия Thermalright Macho, Scythe Mugen Max, Noctua NH-U14S, Thermalright Archon, Thermaltake Frio Silent 14.

Зачем и почему именно так, сказано ниже.

Выбор компонентов - Видеокарта


  1. С максимально массивным радиатором. Как и в случае с процессором, чем больше площадь радиатора - тем эффективнее он отдает тепло.

  2. С максимально большими вентиляторами. См. абзац про БП, п. 2. Никаких турбин, упаси боже.

  3. С бэкплейтом. Бэкплэйт не только держит текстолит платы и не дает ей изгибаться под собственным весом, но и отводит часть тепла. Небольшую - но отводит.

  4. Последнего поколения - GTX 1050/1060/1070/1080. Они энергоэффективны по сравнению с прошлыми поколениями, то есть при большей вычислительной мощности меньше нагреваются. Плюс в них реализован подход, при котором вентиляторы видеокарты включаются только после достижения температуры в 61 градус цельсия. То есть без нагрузки, а также, например, в не очень новых играх со включенным VSYNC, видеокарта вообще не издает никаких звуков - вентиляторы не работают. Это не только снижает шум, но и продляет жизнь вентиляторам, они медленнее изнашиваются и не начинают трещать через год использования.

Конкретные модели: серия видеокарт Gaming от MSI - огромный радиатор (но всего в 2 слота толщиной), 10-сантиметровые кулеры, бэкплейт.

Выбор компонентов - Вентиляторы


  1. Замена 120 мм на 140 мм. Необходимо внимательно изучить корпус (еще при покупке) и заменить корпусные 120-мм вентиляторы на 140-мм вентиляторы с тем же креплением. Иными словами, на все места, на которые возможно, поставить стосороковки с креплением от стодвадцаток. Таких моделей на рынке предостаточно - те же Thermalright TY-140 или Noctua NF-A15, Scythe GlideStream, Cryorig FX140.

  2. Выбор вентиляторов с учетом схемы "positive pressure" : количество вдуваемого воздуха должно всегда (почти всегда) немного превышать количество выдуваемого воздуха. Это радикально влияет на количество пыли в корпусе при достаточно большом потоке воздуха. Чтобы вычислить суммарный входящий и исходящий поток воздуха было удобнее, рекомендуется заменить штатные корпусные кулеры на модели одной серии. К тому же, комплектные вентиляторы редко бывают тихими.

  3. Хорошо масштабируемые по скорости, но тихие вентиляторы. То есть вентиляторы должны уметь изменять свою скорость в широких пределах, а на минимальных оборотах должны быть неслышными.

  4. Принцип "чем больше - тем лучше". Дело в том, что один вентилятор, выдающий 45 дБ рёва, это совсем не то же самое, что 2 вентилятора по 23 дБ каждый. Чем вентиляторов больше, тем сильнее можно снизить их скорость. Даже 5 корпусных вентиляторов на 15 дБ каждый остаются практически полностью неслышными, а вот охлаждают очень и очень эффективно.

Конкретные модели: Noctua серии Redux, Thermalright TY-147A, Cooler Master Silencio FP, Cooler Master JetFlo. Новые модели появляются постоянно, поэтому лучше перед покупкой почитать обзоры.

Выбор компонентов - Жесткие диски (HDD)

Просто откажитесь от них. Идеальная ситуация - когда используется единственный M.2-диск, а из блока питания не торчат для него провода. Хорошая ситуация - когда к M.2-накопителю добавляется SSD на 1 ТБ для файлопомойки, который не издает никаких звуков и не греется.

Да и кому нужны эти гигантские локальные файлопомойки в эпоху быстрого и доступного интернета? Скачал кино, посмотрел - стер. Фотографии и прочее можно засунуть в облако. Годовая подписка на Office 365 стоит 3400 р. в год для 5 пользователей, то есть 680 р. в год на одного. В эту подписку входит быстрое терабайтное облако. Плюс - сам офис, конечно. И OneNote, который отлично заменяет ставший фактически полностью платным Evernote.

С точки зрения охлаждения ситуация осложняется еще и тем, что если диски ставятся в специальную корзину внутри корпуса, то даже при наличии одного единственного SSD или HDD вы вынуждены ей, корзиной, пользоваться. А если дисков нет, корзину можно снять и вытащить из корпуса. А она всегда перекрывает поток воздуха, создаваемый передним втяжным вентилятором.

Даже если и корзины нет, а HDD крепится к нижней части корпуса или позади материнской платы, создающийся винчестером гул всё равно будет хорошо различим на общем фоне.

Если необходимость складировать данные никак не получается победить, можно вынести жесткие диски в отдельный NAS, стоящий в кладовке или туалете и никак и никому не мешающий своим шумом. Ну или хотя бы заменить россыпь 500-гиговых почтитрупиков на одного 8-террабайтного красавца.

Выбор компонентов - Дополнительные мелочи


  1. Термопаста. Для процессора - рекомендуется купить нормальную, а не пользоваться комплектной или уже нанесенной на подошву радиатора. Выбор крутых парней: Gelid GC-Extreme. Тесты убедительно доказывают её эффективность.

  2. Силиконовые гвозди. Используются для крепления корпусных вентиляторов к, собственно, корпусу. Иногда идут в комплекте с вентиляторами. Вообще - заказываются на AliExpress .

  3. Стяжки. Нужны для оптимизации расположения проводов за поддоном материнской платы. Иногда идут в комплекте с корпусом, дополнительные - покупаются в любом строительном магазине.

  4. Кисть малярная жесткая. Нужна для очистки от пыли внутренностей компьютера и особенно рёбер радиаторов. Работает в паре с пылесосом.

Теперь поговорим о том, как всё это грамотно собрать.

Сборка

1. Вынуть ненужное из корпуса. Обычно это корзина для 5,25-дюймовых устройств и аналогичная корзина для 3,5-дюймовых дисков. Обе они с большой вероятностью будут мешать воздухотоку. Тут кроется нюанс: часто эти корзины придают жесткость корпусу. Поэтому, сняв одну корзину, поднимите корпус за угол. Если чувствуете, что его чуть-чуть перекашивает - засовываете корзину обратно. Если нет - снимаете следующую. Обратите внимание на то, что зачастую производитель (и обзорщики) не афишируют возможность съёма дисковых корзин, иногда надо подлезть в какое-то неочевидное место в корпусе или открутить/отклеить ножки (), под которыми находятся головки винтов, держащих корзины.

2. Если посадочных мест под корпусные вентиляторы больше, чем у вас есть вентиляторов, то необходимо соблюдать следующие приоритеты при установке вентиляторов:

1. Вытяжной верхний.
2. Втяжной нижний.
3. Втяжной нижний-передний.
4. Вытяжной задний-верхний.
5. Втяжной передний-верхний.

3. Это обусловлено тем, как идет поток воздуха в корпусе. Принято считать, что "из нижнего правого угла в левый верхний". И это было бы правильно, если бы была необходимость обдувать жесткие диски в корзине. А мы от нее решили отказаться. Поэтому (основной) поток воздуха у нас будет идти снизу вверх:

Это позволит, во-первых, нижнему вентилятору дуть непосредственно на видеокарту, то есть немного понижать её температуру, даже когда собственные кулеры видеокарты выключены. А во-вторых, позволит использовать для охлаждения конвекцию, подгоняя вентилятором поднимающийся вверх сам по себе воздух.

4. При установке вентиляторов сначала подключаем их к коннекторам, потом, поворачивая вентиляторы, укладываем кабель вокруг рамы вентилятора и только после этого крепим к корпусу. Чтобы кабели от вентиляторов не болтался. Крепим силиконовыми гвоздями, естественно.

5. При использовании силиконовых гвоздей "попа" гвоздя должна смотреть наружу, а "пипирка" - внутрь корпуса. Вот инструкция .

6. Стяжка кабелей на задней стороне матери производится в самый последний момент, когда начало и конец кабеля зафиксированы. Причем производится таким образом, чтобы кабели по возможности не переплетались и не накладывались друг на друга - задняя крышка может просто не закрыться.

Хорошо:

6. Помимо кабелей питания сзади поддона материнской платы же необходимо пропустить и кабели коннекторов с морды корпуса - обычно это USB 2.0, USB 3.0 и звук. На стороне материнки их можно вывести через щель между блоком питания и поддоном материнки. Аналогично необходимо поступить и с коннекторами от кнопок и диодов, расположенных спереди корпуса.

7. Башню процессорного кулера можно установить вертикально или горизонтально. Почему вертикальная установка работает лучше, я писал . Поэтому ставим вертикально. Естественно, используем отдельно закупленную термопасту.

Добавлю лишь, что при такой вертикальной установке (процессорного кулера) на видеокарту нормально влезает водянка замкнутого типа, например Accelero Hybrid III-120/140 - проблем с радиатором, крепящимся сзади видеокарты, нет, места хватает.

Переходим к настройке системы охлаждения.

Настройка системы охлаждения

Концепция

Необходимо руководствоваться следующими простыми принципами:


  1. Скорость вентиляторов должна быть минимально необходимой для поддержания комфортной температуры компонентов внутри корпуса.

  2. Скорость вентиляторов должна изменяться автоматически в зависимости от нагрева компонентов внутри корпуса.

Что такое "комфортная температура"?

Для процессоров последних поколений - Skylake и Kaby Lake - за условную верхнюю планку можно принять значение в 65-70 градусов. Для вышеперечисленных видеокарт nVidia - около 70-75 градусов. Это идеальные верхние значения.

Напомню про нюанс: видеокарты при резком скачке нагрузки разогреваются очень быстро. А термическое расширение, происходящее за короткий промежуток времени (например, с 40 до 80 градусов за 10 секунд) крайне неполезно для всех элементов, установленных на текстолите видеокарты. Это связано с тем, что коэффициент термического расширения у текстолита, припоя и чипов разный, поэтому при резких перепадах температур существует ненулевая вероятность отрыва контактной площадки чипа от текстолита (что потом пытаются вылечить так называемой "жаркой" видеокарт). То же касается и сверхбыстрых дисков M.2 на шине PCI Express, типа Samsung 950/960 Pro.

Именно поэтому разница между нижней и верхней границами температуры на устройстве не должна быть большой, а перепад - быстрым.

Как должна изменяться скорость вентиляторов в зависимости от температуры?

В отсутствии нагрузки процессор и видеокарта снижают частоты и практически не греются. Видеокарта полностью останавливает кулеры. Остановить вентилятор на процессоре программными средствами нельзя, но можно снизить частоту его вращения до минимальной величины в 400-500 оборотов, в зависимости от модели вентилятора. Нужно ли во время простоя или низкой загрузки системы включать еще какие-то кулеры кроме процессорного? Да, один вытяжной кулер, установленный на верхней панели корпуса - он будет потихоньку вытягивать весь нагретый воздух из корпуса.

В целом картина для системы без нагрузки получается такая: из всех вентиляторов работает только процессорный (который собирает воздух с видеокарты и отправляет его наверх, через радиатор процессора, на большой вытяжной кулер) и этот самый верхний вытяжной кулер. Причем оба крутятся с минимальной скоростью и вообще никак не слышны. Воздух засасывается в корпус вынужденно, через дырки для вентиляторов. Практика показывает, что двух работающих кулеров (плюс конвекции) хватает для эффективного охлаждения системы при интернет-серфинге, просмотре кино, работы в офисных приложениях. При этом температура процессора (в моем случае - i5-6600K) стабилизируется на значении около 40 градусов, видеокарты (в моем случае - MSI GTX1080) - на значении в 45 градусов.

Важным плюсом такого подхода является минимизация количества пыли, которая летит в корпус, т.к. втяжной поток просто ничтожный.

Под нагрузкой дело обстоит иначе. Представим себе сложный вариант, когда нагревается и видеокарта, и процессор. Видеокарта догревается до 61 градуса и начинает активно забирать кулерами воздух, нагревать его и выкидывать обратно в корпус. В этом случае необходимо как подавать больше воздуха на вдув в нижней части корпуса, так и выводить больше горячего воздуха из корпуса сверху. Приоритетность включения вентиляторов - та же, что приведена выше:


  1. Вытяжной верхний (крутится всегда).

  2. Втяжной нижний (включается первым).

  3. Втяжной нижний-передний (включается примерно на 65 градусах на видеокарте).

  4. Вытяжной задний-верхний (включается одновременно с предыдущим).

  5. Втяжной передний-верхний (включается в тот момент, когда температура на видеокарте достигает 70 градусов).

При всех включенных вентиляторах потоки воздуха выглядят примерно так:

Из этого следует интересный вывод: если вентиляторы 3 и 4 идентичны, то их можно подключить разветвителем к одному коннектору на материнской плате и управлять этой парой как одним вентилятором.

Вращение процессорного вентилятора также можно ускорить, тогда он будет эффективнее отводить часть тепла с видяхи.

Исходя из вышесказанного, процесс настройки скоростей вентиляторов выглядит так:


  1. Даем нагрузку на все компоненты системы (тот же стресс-тест из AIDA64 подойдет).

  2. В указанном порядке начинаем медленно повышать скорости вентиляторов.

  3. Находим минимальные значения, при которых температуры компонентов стабилизируются на приемлемом уровне.

  4. Подбираем значения между нулем и этими самыми минимальным значениями так, чтобы перепад температур не был слишком резким.

Инструменты

И немного о том, при помощи чего всё это настраивать.

Вариант номер 1 - замечательная программа SpeedFan . Она позволяет привязывать скорость вращения любого кулера к любому термодатчику в системе. Проблема с данной программой заключается в отсутствии поддержки контроллеров вентиляторов, использующихся в новых материнских платах. Поэтому можно его поставить, запустить и выяснить, видит ли она ваши вентиляторы или нет. Если да - . Если нет - переходим к варианту номер два.

Вариант номер 2 - собственные утилиты производителей материнских плат. Они более примитивные, зато гарантированно работают. Такие утилиты редко позволяют считывать показания с термодатчика видеокарты, но в нашем случае ситуация упрощается - так как при нагреве видеокарты начинает разогреваться стоящий над ней процессор, привязывать обороты кулера можно именно к температуре процессора. Да, это еще один неочевидный плюс именно такого положения процессорного кулера.

Настройка скорости вращения кулеров видеокарты производится при помощи прекрасного универсального приложения MSI Afterburner . Есть и другие варианты . Но афтербёрнер - это уже как бы стандарт.

Итоги

Ну вот, пожалуй, и весь сказ. Если всё сделать правильно, то получится следующее:


  • Без нагрузки система вообще не слышна - работает 2 кулера, оба крутятся на минимальных оборотах. И это единственные движущиеся механические части внутри корпуса в этот момент. Вентиляторы видеокарты стоят, блок питания молчит, пыль никуда не летит.

  • Под нагрузкой система начинает постепенно и последовательно раскручивать вентиляторы, максимальное количество оборотов для каждого в моей системе, например, не превышает 950, а это очень тихо. Поэтому даже при полной нагрузке появляется лишь тихий ровный гул, который всё равно глушится звуками взрывов и выстрелов из игр. А как только нагрузка падает - сразу восстанавливается полная тишина.

Да вы не ошиблись такие действительно бывают. Собрать бесшумный компьютер дело непростое, нужно понимать какой набор комплектующих применить что бы значительно снизить шум и сделать пк тихим. Что же является источником вибрации и шума в современном системном блоке?

  • Блок питания снабжен вентилятором для охлаждения питающих микросхем и отвода тепла
  • Система охлаждения CPU, жидкостная или воздушная не важно;
  • Система охлаждения GPU, простым языком видеокарты;
  • Жесткий диск, HDD скорость вращения магнитных блинов от 5000 оборотов минуту;
  • Вибрация жесткого диска, которая передается всему корпусу;
  • Устройство чтения компакт дисков DVD-RW или Blu-Ray так же ощутимая вибрация даже при использовании фирменных оптических носителей;
  • Система внутренней вентиляции корпуса и отсутствие шумоизоляции.

Первое и главное нужно четко понимать, что тихий пк это далеко не дешевое решение. Для реализации наших планов необходим блок питания с пассивным охлаждением или комбинированным и качественной начинкой, мы остановили свой выбор на компании SeaSonic модель блока питания Platinum-520 fanless (520W) название говорит само за себя. (без кулера). Так же Corsair серии RM это высокотехнологичный блок с интеллектуальной системой охлаждения. Вентиляторы краткосрочно включаются только при максимальной нагрузке. Охлаждению центрального процессора следует уделить особое внимание, ведь это основной узел системы и от его стабильной работы зависит скорость и производительность компьютера. Охлаждать его мы будем безвентиляторными (бесшумным); радиатором фирмы Zalman FX70 и FX100. Инженеры добились исключительных показателей эффективного конвективного охлаждения. Жесткий диск это один из основных источников вибрации в системе, но установив накопитель SSD мы на 100% решаем эту проблему.

Cверхтихие игровые компьютеры

Теперь уделим внимание другой части нашей аудитории, конечно же это геймеры. Тут все обстоит значительно сложнее, абсолютно бесшумный комп создать не получится, если быть точнее, то стандартными средствами без дополнительного тюнинга. Игровая видеокарта, а таковыми мы считаем линейку MSI Gaming GTX 1060 и выше при серьезной нагрузке выделяет значительное количество тепла постепенно нагревая все узлы в замкнутом пространстве корпуса, поэтому необходимо использовать внутреннюю систему принудительной вентиляции блока для отвода излишков тепла (кулеры с пониженной частотой вращения).

Графические адаптеры MSI GAMING снабжены системой интеллектуального охлаждения Twin Frozr, которая очень эффективно управляет скоростью вращения вентиляторов на видеокарте оставляя их неподвижными, а значит бесшумными при нагрузке до 60%. Учитывая вышесказанное, игровые ПК, настроенные нашими инженерами, будут работать тихо, и вы будете сокрушать ваших противников сосредоточив свое внимание только на игровом процессе.Мы реализовали много индивидуальных проектов сложных и интересных, поэтому с радостью предложим вам ряд готовых бесшумных компьютеров для комфортного отдыха и работы.

Постоянные читатели 3DNews наверняка слышали про российскую компанию «Теркон-КТТ». Например, в прошлом году мы выпустили репортаж с выставки ISC 2017 , на которой представители екатеринбургской фирмы показали ряд устройств, основанных на контурных тепловых трубках (КТТ, английская аббревиатура — LHP), способных охлаждать практически любые вычислительные системы: от планшетов и моноблоков до авиационных бортовых компьютеров и космической техники. Естественно, лабораторию 3DNews заинтересовали разработки отечественного производителя. В итоге к нам на тест приехал системный блок под названием «Глава» — компьютер без вентиляторов, процессорное охлаждение которого основано на LHP-технологии.

Корпус Calyos NSG S0

В этом корпусе имеется два независимых контура охлаждения на основе эффекта фазового перехода. Испарители устроены так, что циркуляция теплоносителя обеспечивается за счет капиллярного эффекта. Они дополнены расширительными бачками. С помощью тепловых трубок эта часть контура соединена с испарителями высокого давления для процессора и графического ядра. Производитель заявляет, что в полностью пассивном режиме данная система способна без проблем рассеивать до 475 Вт тепловой энергии. Устройство «Теркон», о котором пойдет речь далее, работает по схожему принципу.

Хладагент в контурных тепловых трубках находится в двух состояниях: жидком и газообразном. Система работает по замкнутому испарительно-конденсационному циклу и использует капиллярное давление для прокачки теплоносителя. Схема работы КТТ представлена на картинке выше.

Такой тип устройства обладает рядом преимуществ в сравнении с обычными теплотрубками. Во-первых, у КТТ существенно более высокая теплопередающая способность. При этом эффективность передачи тепла не зависит от ориентации в пространстве — то есть работает и в гравитационном поле, и в невесомости. Во-вторых, технология позволяет создавать разнообразные конструкторские решения, некоторые из которых мы уже показывали . Наконец, в-третьих, такие устройства имеют высокую надежность и длительный рабочий ресурс. Системы охлаждения на базе LHP-технологии не требуют подключения электричества, не склонны к протечкам, да и вообще в таких устройствах ломаться особо нечему. Собственно говоря, поэтому контурные тепловые трубки и используются в космической отрасли.

В роли капиллярной структуры могут использоваться медь, нержавеющая сталь, никель, титан и другие материалы. А вот хладагент в КТТ «Теркон» может быть разным. У компании есть разнообразные разработки, в которых используется вода, аммиак, метанол, этанол, ацетон и фреоны.

Invasion Labs PROJECT MARS: системный блок на базе охлаждения "Теркон-КТТ"

Технология контурных тепловых трубок хорошо подходит для организации охлаждения компьютерной техники. Причем полностью пассивная СО способна эффективно работать с самым мощным железом. Например, за плечами компании «Теркон» есть успешный опыт сотрудничества с питерским сборщиком Invasion Labs. На выставке Computex 2018, прошедшей этим летом в Тайбэе, был представлен системный блок PROJECT MARS , который, чего скрывать, очень сильно напоминает ранее упомянутый проект Calyos NSG S0. Полностью пассивная система охлаждения «Марса» способна эффективно охлаждать две видеокарты GeForce GTX 1080 Ti и 18-ядерный центральный процессор Core i9-7980XE. За отвод тепла всех нагревающихся элементов системного блока отвечают три испарителя и два массивных алюминиевых радиатора.

Понятно, что речь идет о простеньких офисных системниках на базе уже откровенно устаревших комплектующих. Поэтому компьютер «Глава» мне был не особо интересен. К с частью, корпус Thermaltake Core G3 вместе с системой охлаждения можно заказать на сайте «Теркон» отдельно — на момент написания статьи такой тандем стоил 11 000 рублей. На базе этих комплектующих я решил собрать более мощную систему. Гораздо более мощную.

На вопрос, чем же обусловлен выбор корпуса Thermaltake Core G3, мне ответили достаточно ожидаемо: «Он компактный, в нем хватает пространства для практически любой материнской платы, и корпус идеально подошел под размеры радиатора ». Действительно, со стороны кажется, будто боковая стенка у модели Thermaltake так и должна выглядеть. Однако вместе с компьютером шла подробная инструкция по установке системы охлаждения, то есть закрепить ее на стенке какого-нибудь другого корпуса не составит особых проблем. Главное, чтобы испаритель и контурные теплотрубки спокойно прошли через окошко на заградительной стенке кейса. И все же в боковой стенке другого корпуса придется сделать несколько отверстий.

Кстати, производитель заменил у корпуса ножки, чтобы конструкция была более устойчивой. Действительно, пустой Core G3, на стенке которого закреплен радиатор системы охлаждения, неустойчив — корпус так и норовит завалиться на бок. При этом никаких претензий к устойчивости системного блока в собранном виде нет.

Радиатор имеет относительно небольшие размеры — 300 × 410 мм. Он выполнен из алюминия, но покрашен черной матовой краской. Радиатор насчитывает 37 ребер, высота каждого гребня составляет 18 мм. По словам представителей компании, данный радиатор может отводить до 100 Вт тепла в пассивном режиме. При этом у КТТ таких ограничений нет: трубки могут передавать и 300 Вт энергии — тут главное успевать отводить тепло. В качестве хладагента используется фреон, но вот какой именно — секрет.

Испаритель у системы охлаждения небольшой — он выполнен в виде медного бруска размерами 20 × 35 × 42 мм. Такой площади контакта достаточно, чтобы целиком накрыть чипы для платформ Intel LGA1150/1151/1155/1156. Думаю, не будет проблем и с охлаждением процессоров AMD Ryzen, хотя в комплекте с КТТ шла система крепления исключительно под решения Intel — это слегка модифицированный крепеж компании Deepcool. Наверняка аналогичную прижимную систему можно сделать и для платформ AM4/AM3+/FM2/FM1. А вот для процессоров Ryzen Threadripper и Skylake-X такой испаритель не подойдет — у него слишком маленькая площадь соприкосновения.

От испарителя с одной стороны отходит тоненькая стальная трубка, внешний диаметр которой составляет 2 мм. С другой стороны к нему приварен стальной цилиндр — в нем накапливается хладагент.

Thermaltake Core G3 — корпус необычный. В частности, видеокарта в нем устанавливается при помощи гибкого шлейфа вверх тормашками. Из-за этого нет смысла использовать в игровой системе на базе Core G3 материнские платы форм-факторов ATX и даже mATX — большая часть слотов расширения просто будет перекрыта графическим адаптером. Лучший выбор здесь — mini-ITX-решения. Максимальная высота процессорного кулера, который совместим с этим корпусом, не должна превышать 110 мм. В основном Core G3 предназначен для использования необслуживаемой системы водяного охлаждения. А еще Thermaltake Core G3 поддерживают установку исключительно блоков питания форм-фактора SFX.

По этим причинам я решил собрать тестовый стенд на основе материнской платы . Испаритель системы охлаждения «Теркон» был установлен на 6-ядерный процессор Core i5-8600K. В таком виде и производились все тесты. Очень жаль, что конструкция устройства не имеет еще одного испарителя, который можно было бы закрепить на GPU, — видеокарту пришлось оставить с "родным" охлаждением.

Игры и программы