Расстояние от точки до точки, формулы, примеры, решения. Расстояние от точки до точки: формулы, примеры, решения Определить расстояние между точками по координатам

Лекция: Формула расстояния между двумя точками; уравнение сферы


Расстояние между двумя точками


Для нахождения расстояния между двумя точками на прямой в предыдущем вопросе мы использовали формулу d = х 2 – х 1.


Но, что касается плоскости, дела обстоят иначе. Не достаточно просто найти разность координат. Для нахождения расстояния между точками по их координатам следует воспользоваться следующей формулой:

Например, если у Вас имеются две точки с некоторыми координатами, то найти расстояние между ними можно следующим образом:

А (4;-1), В (-4;6):

АВ = ((4 + 4) 2 + (-1 – 6) 2) 1/2 ≈ 10,6.

То есть для вычисления расстояния между двумя точками на плоскости необходимо найти корень из суммы квадратов разностей координат.


Если необходимо найти расстояние между двумя точками на плоскости, следует воспользоваться аналогичной формулой с дополнительной координатой:


Уравнение сферы


Для задания сферы в пространстве следует знать координаты её центра, а также её радиус, чтобы воспользоваться следующей формулой:

Данное уравнение соответствует сфере, центр которой находится в начале координат.


Если же центр сферы сдвинут на некоторое количество единиц по осям, то следует воспользоваться следующей формулой.


Расстояние от точки до точки - это длина отрезка, соединяющего эти точки, в заданном масштабе. Таким образом, когда речь идет об измерении расстояния, то требуется знать масштаб (единицу длины), в котором будут проводиться измерения. Поэтому, задачу нахождения расстояния от точки до точки обычно рассматривают либо на координатной прямой, либо в прямоугольной декартовой системе координат на плоскости или в трехмерном пространстве. Другими словами, наиболее часто приходится вычислять расстояние между точками по их координатам.

В этой статье мы, во-первых, напомним, как определяется расстояние от точки до точки на координатной прямой. Далее получим формулы для вычисления расстояния между двумя точками плоскости или пространства по заданным координатам. В заключении, подробно рассмотрим решения характерных примеров и задач.

Навигация по странице.

Расстояние между двумя точками на координатной прямой.

Давайте для начала определимся с обозначениями. Расстояние от точки А до точки В будем обозначать как .

Отсюда можно заключить, что расстояние от точки А с координатой до точки В с координатой равно модулю разности координат , то есть, при любом расположении точек на координатной прямой.

Расстояние от точки до точки на плоскости, формула.

Получим формулу для вычисления расстояния между точками и , заданными в прямоугольной декартовой системе координат на плоскости.

В зависимости от расположения точек А и В возможны следующие варианты.

Если точки А и В совпадают, то расстояние между ними равно нулю.

Если точки А и В лежат на прямой, перпендикулярной оси абсцисс, то точки и совпадают, а расстояние равно расстоянию . В предыдущем пункте мы выяснили, что расстояние между двумя точками на координатной прямой равно модулю разности их координат, поэтому, . Следовательно, .

Аналогично, если точки А и В лежат на прямой, перпендикулярной оси ординат, то расстояние от точки А до точки В находится как .

В этом случае треугольник АВС – прямоугольный по построению, причем и . По теореме Пифагора мы можем записать равенство , откуда .

Обобщим все полученные результаты: расстояние от точки до точки на плоскости находится через координаты точек по формуле .

Полученную формулу для нахождения расстояния между точками, можно использовать когда точки А и В совпадают или лежат на прямой, перпендикулярной одной из координатных осей. Действительно, если А и В совпадают, то . Если точки А и В лежат на прямой, перпендикулярной оси Ох , то . Если А и В лежат на прямой, перпендикулярной оси Оу , то .

Расстояние между точками в пространстве, формула.

Введем прямоугольную систему координат Оxyz в пространстве. Получим формулу для нахождения расстояния от точки до точки .

В общем случае, точки А и В не лежат в плоскости, параллельной одной из координатных плоскостей. Проведем через точки А и В плоскости, перпендикулярные координатным осям Ох , Оу и Oz . Точки пересечения этих плоскостей с координатными осями дадут нам проекции точек А и В на эти оси. Обозначим проекции .


Искомое расстояние между точками А и В представляет собой диагональ прямоугольного параллелепипеда, изображенного на рисунке. По построению, измерения этого параллелепипеда равны и . В курсе геометрии средней школы было доказано, что квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений, поэтому, . Опираясь на информацию первого раздела этой статьи, мы можем записать следующие равенства , следовательно,

откуда получаем формулу для нахождения расстояния между точками в пространстве .

Эта формула также справедлива, если точки А и В

  • совпадают;
  • принадлежат одной из координатных осей или прямой, параллельной одной из координатных осей;
  • принадлежат одной из координатных плоскостей или плоскости, параллельной одной из координатных плоскостей.

Нахождение расстояния от точки до точки, примеры и решения.

Итак, мы получили формулы для нахождения расстояния между двумя точками координатной прямой, плоскости и трехмерного пространства. Пришло время рассмотреть решения характерных примеров.

Число задач, при решении которых конечным этапом является нахождение расстояния между двумя точками по их координатам, поистине огромно. Полный обзор таких примеров выходит за рамки данной статьи. Здесь мы ограничимся примерами, в которых известны координаты двух точек и требуется вычислить расстояние между ними.

Пусть задана прямоугольная система координат.

Теорема 1.1. Для любых двух точек М 1 (х 1 ;у 1) и М 2 (х 2 ;у 2) плоскости расстояние d между ними выражается формулой

Доказательство. Опустим из точек М 1 и М 2 перпендикуляры М 1 В и М 2 А соответственно

на оси Оу и Ох и обозначим через К точку пересечения прямых М 1 В и М 2 А (рис. 1.4). Возможны следующие случаи:

1)Точки М 1 , М 2 и К различны. Очевидно, что точка К имеет координаты (х 2 ;у 1). Нетрудно заметить что М 1 К = ôх 2 – х 1 ô, М 2 К = ôу 2 – у 1 ô. Т.к. ∆М 1 КМ 2 прямоугольный, то по теореме Пифагора d = М 1 М 2 = = .

2) Точка К совпадает с точкой М 2 , но отлична от точки М 1 (рис. 1.5). В этом случае у 2 = у 1

и d = М 1 М 2 = М 1 К = ôх 2 – х 1 ô= =

3) Точка К совпадает с точкой М 1 , но отлична от точки М 2 . В этом случае х 2 = х 1 и d =

М 1 М 2 = КМ 2 = ôу 2 - у 1 ô= = .

4) Точка М 2 совпадает с точкой М 1 . Тогда х 1 = х 2 , у 1 = у 2 и

d = М 1 М 2 = О = .

Деление отрезка в данном отношении.

Пусть на плоскости дан произвольный отрезок М 1 М 2 и пусть М ─ любая точка этого

отрезка, отличная от точки М 2 (рис. 1.6). Число l, определяемое равенством l = , называется отношением, в котором точка М делит отрезок М 1 М 2 .

Теорема 1.2. Если точка М(х;у) делит отрезок М 1 М 2 в отношении l, то координаты этой определяются формулами

х = , у = , (4)

где (х 1 ;у 1) ─ координаты точки М 1 , (х 2 ;у 2) ─ координаты точки М 2 .

Доказательство. Докажем первую из формул (4). Вторая формула доказывается аналогично. Возможны два случая.

х = х 1 = = = .

2) Прямая М 1 М 2 не перпендикулярна оси Ох (рис. 1.6). Опустим перпендикуляры из точек М 1 , М, М 2 на ось Ох и обозначим точки их пересечения с осью Ох соответственно Р 1 , Р, Р 2 . По теореме о пропорциональных отрезках = l.

Т.к. Р 1 Р = ôх – х 1 ô, РР 2 = ôх 2 – хô и числа (х – х 1) и (х 2 – х) имеют один и тот же знак (при х 1 < х 2 они положительны, а при х 1 > х 2 отрицательны), то

l = = ,

х – х 1 = l(х 2 – х), х + lх = х 1 + lх 2 ,

х = .

Следствие 1.2.1. Если М 1 (х 1 ;у 1) и М 2 (х 2 ;у 2) ─ две произвольные точки и точка М(х;у) ─ середина отрезка М 1 М 2 , то

х = , у = (5)

Доказательство. Так как М 1 М = М 2 М, то l = 1 и по формулам (4) получаем формулы (5).

Площадь треугольника.

Теорема 1.3. Для любых точек А(х 1 ;у 1), В(х 2 ;у 2) и С(х 3 ;у 3), не лежащих на одной

прямой, площадь S треугольника АВС выражается формулой

S = ô(х 2 – х 1)(у 3 – у 1) – (х 3 – х 1)(у 2 – у 1)ô (6)

Доказательство. Площадь ∆ АВС, изображённого на рис. 1.7, вычисляем следующим

S ABC = S ADEC + S BCEF – S ABFD .

Вычисляем площади трапеций:

S ADEC =
,

S BCEF =

S ABFD =

Теперь имеем

S ABC = ((х 3 – х 1)(у 3 + у 1) + (х 3 – х 2)(у 3 + у 2) - (х 2 – -х 1)(у 1 + у 2)) = (х 3 у 3 – х 1 у 3 + х 3 у 1 – х 1 у 1 + + х 2 у 3 – -х 3 у 3 + х 2 у 2 – х 3 у 2 – х 2 у 1 + х 1 у 1 – х 2 у 2 + х 1 у 2) = (х 3 у 1 – х 3 у 2 + х 1 у 2 – х 2 у 1 + х 2 у 3 –

Х 1 у 3) = (х 3 (у 1 – у 2) + х 1 у 2 – х 1 у 1 + х 1 у 1 – х 2 у 1 + у 3 (х 2 – х 1)) = (х 1 (у 2 – у 1) – х 3 (у 2 – у 1) + +у 1 (х 1 – х 2) – у 3 (х 1 – х 2)) = ((х 1 – х 3)(у 2 – у 1) + (х 1 – х 2)(у 1 – у 3)) = ((х 2 – х 1)(у 3 – у 1) –

- (х 3 – х 1)(у 2 – у 1)).

Для другого расположения ∆ АВС формула (6) доказывается аналогично, но может получиться со знаком «-». Поэтому в формуле (6) ставят знак модуля.


Лекция 2.

Уравнение прямой линии на плоскости: уравнение прямой с главным коэффициентом, общее уравнение прямой, уравнение прямой в отрезках, уравнение прямой, проходящей через две точки. Угол между прямыми, условия параллельности и перпендикулярности прямых на плоскости.

2.1. Пусть на плоскости задана прямоугольная система координат и некоторая линия L.

Определение 2.1. Уравнение вида F(x;y) = 0, связывающее переменные величины x и y, называется уравнение линии L (в заданной системе координат), если этому уравнению удовлетворяют координаты любой точки, лежащей на линии L, и не удовлетворяют координаты никакой точки, не лежащей на этой прямой.

Примеры уравнений линий на плоскости.

1) Рассмотрим прямую, параллельную оси Oy прямоугольной системы координат (рис. 2.1). Обозначим буквой A точку пересечения этой прямой с осью Ox, (a;o) ─ её ор-

динаты. Уравнение x = a является уравнением данной прямой. Действительно, этому уравнению удовлетворяют координаты любой точки M(a;y) этой прямой и не удовлетворяют координаты ни одной точки, не лежащей на прямой. Если a = 0, то прямая совпадает с осью Oy, которая имеет уравнение x = 0.

2) Уравнение x - y = 0 определяет множество точек плоскости, составляющих биссектрисы I и III координатных углов.

3) Уравнение x 2 - y 2 = 0 ─ это уравнение двух биссектрис координатных углов.

4) Уравнение x 2 + y 2 = 0 определяет на плоскости единственную точку O(0;0).

5) Уравнение x 2 + y 2 = 25 ─ уравнение окружности радиуса 5 с центром в начале координат.

Каждая точка А плоскости характеризуется своими координатами (х, у). Они совпадают с координатами вектора 0А , выходящего из точки 0 - начала координат.

Пусть А и В - произвольные точки плоскости с координатами (х 1 y 1) и (х 2 , у 2) соответственно.

Тогда вектор AB имеет, очевидно, координаты (х 2 - х 1 , y 2 - y 1). Известно, что квадрат длины вектора равен сумме квадратов его координат. Поэтому расстояние d между точками А и В, или, что то же самое, длина вектора АВ, определяется из условия

d 2 = (х 2 - х 1) 2 + (y 2 - y 1) 2 .

$$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $$

Полученная формула позволяет находить расстояние между любыми двумя точками плоскости, если только известны координаты этих точек

Каждый раз, говоря о координатах той или иной точки плоскости, мы имеем в виду вполне определенную систему координат х0у. А вообще-то систему координат на плоскости можно выбирать по-разному. Так, вместо системы координат х0у можно рассмотреть систему координат хִу’ , которая получается в результате поворота старых осей координат вокруг начальной точки 0 против часовой стрелки на угол α .

Если некоторая точка плоскости в системе координат х0у имела координаты (х, у), то в новой системе координат хִу’ она будет иметь уже другие координаты (х’, у’).

В качестве примера рассмотрим точку М, расположенную на оси 0х’ и отстоящую от точки 0 на расстоянии, равном 1.

Очевидно, что в системе координат x0у эта точка имеет координаты (cos α , sin α ), а в системе координат хִу’ координаты (1,0).

Координаты любых двух точек плоскости А и В зависят от того, как в этой плоскости задана система координат. А вот расстояние между этими точками не зависит от способа задания системы координат .

Другие материалы

В §§ 5, 6 и 10 этой главы мы рассмотрим некоторые простейшие задачи аналитической геометрии, к которым часто приводятся многие более сложные задачи. Одной из таких задач является задача о расстоянии между двумя точками.

Пусть в выбранной на плоскости прямоугольной системе координат заданы две точки Выразим расстояние d между этими двумя точками через их координаты.

Найдем проекции точек А и В на координатные оси (рис. 8). Будем иметь:

Через одну из данных точек, например А, проведем прямую параллельно оси абсцисс до пересечения в точке С с прямой

Из прямоугольного треугольника АСВ получим:

(здесь АС и СВ - длины сторон треугольника АСВ). Но так как

(гл. 1, § 3), то

Ясно, что здесь нужно брать арифметическое значение корня.

Таким образом, расстояние между двумя данными точками равно корню квадратному из суммы квадратов разностей одноименных координат этих точек.

Замечание. Если данные точки А к В будут располагаться на прямой, параллельной координатной оси, то треугольника ABC мы не получим, однако формула (3) и в эгом случае будет справедлива. Действительно, если, например, точки А к В будут лежать на прямой, параллельной оси Ох, то, очевидно, (гл. I, § 3). Это же получится и из формулы (3), так как в этом случае

Кодеки и плееры