Мощный усилитель звука на микросхеме tda. Повышение мощности усилителя на микросхеме TDA7294. Назначение выводов микросхемы

Не мечтай, действуй!



В настоящем проекте мы построим простой усилитель мощности звуковой частоты на популярной микросхеме . Чтобы конструкция стала законченной, снабдим его регулятором громкости и тембра, а также устройством защиты акустических систем.
Ознакомимся с представленными материалами, соберем базовые узлы и насладимся звучанием собственного усилителя…
Через некоторое время проведем серию экспериментов по улучшению звука, извлекаемого с помощью усилителя.

В первой части проекта мы, не мудрствуя лукаво, соберем «студенческий» усилитель Питера Смита.

Немного истории

На рис. 1 изображена принципиальная схема усилителя, которую в свое время собирал каждый увлеченный студент радиотехнической специальности. На юбилейной (30 лет со дня окончания ВУЗа) встрече выпускников Новгородского политехнического института в мае 2009 года мы обсуждали этот усилитель, а главным образом танцы, в озвучивании и которых он принимал самое непосредственное участие .


Рис. 1. Принципиальная схема высококачественного усилителя звуковой частоты С. Батя и В. Середы


Параметры усилителя мощности следующие:
Номинальная выходная мощность (Rн=4 Ом, Кг=0,7 %), Вт = 20
Рабочий диапазон частот при неравномерности частотной характеристики ±0,5 дБ, Гц = 20…20000
Чувствительность при номинальной выходной мощности и входном сопротивлении 10 кОм, В = 1
Относительный уровень помех, дБ = -86

Усилитель выполнен по топологии Лина, ставшей классической и состоит из дифференциального входного каскада на транзисторах VT1, VT2, усилителя напряжения VT3 и двухтактного выходного каскада VT4 – VT9. Выбрана неинвертирующая схема включения. Резистор R1 определяет входное сопротивление, а резисторы R6 и R7 образуют делитель цепи отрицательной обратной связи, задающий усиление по переменному току: Ku=1+R7/R6=11 (20,83дБ).

По постоянному току коэффициент передачи равен единице, от аудиоусилителя не требуется усиление постоянного напряжения. Но встречаются авторы, скажем Е.С. Алешин, которые утверждают, что усилитель должен иметь нижнюю границу усиливаемых частот от постоянного тока (0 Гц). Для разделения цепей передачи постоянного и переменного тока установлен конденсатор С3. Входная цепь R1, C1 и цепь обратной связи R6, C3 образуют фильтры верхних частот. Поскольку частоты среза этих фильтров близки, вместе они определяют нижнюю границу воспроизводимого усилителем диапазона частот.
В нашем случае:
Оптимальной результирующей частотой среза будет частота, на порядок ниже слышимой человеком, а именно – 1…3 Гц.
В цепи коллектора усилителя напряжения VT3 имеется схема «вольтодобавки» R10, R11, C5, создающая положительную обратную связь на нижних частотах, и позволяющая улучшить форму отрицательной полуволны усиливаемого сигнала. В коллектор VT3 включен также конденсатор С4, формирующий требуемую амплитудно-частотную характеристику на высоких частотах. Обычно такой конденсатор включают между базой и коллектором каскада усилителя напряжения. За счет эффекта Миллера его емкость оказывается небольшой – несколько десятков пикофарад. Включение конденсатора С4 между коллектором и общим проводом потребовало на порядок увеличить его емкость.

Выходной каскад выполнен на составном эмиттерном повторителе – тройке, причем в отрицательном плече применена схема Шиклаи, позволяющая использовать мощные транзисторы одинаковой структуры.
Поскольку в то время был дефицит всего, транзисторы мы покупали на радиорынке Автово в Ленинграде (теперь Санкт – Петербург). Помню, в первый раз приобрел транзисторы у любезного молодого человека в пиджаке и при галстуке. По приезде в Новгород выяснилось, что все транзисторы имеют пробой между коллектором и эмиттером, хотя и не паяные. В следующий раз мне не удалось заглянуть в глаза этому жулику, но опыт пришел быстро. На радиорынке я приметил мужика, у которого тряслись руки, и внешний вид был не столь фешенебельный, как у предыдущего. Зато все приобретенные транзисторы оказались просто замечательными, да еще с военной приемкой!

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»


Интегральная схема TDA2006 снята с производства, но все еще встречается в продаже. Ее улучшенным вариантом можно считать распространенную микросхему высококачественного звукового усилителя .
Все микросхемы имеют внутреннюю защиту от перегрузок или короткого замыкания на выходе, а также автоматическую систему отключающую усилитель при перегреве.
Металлическая планка для крепления к радиатору микросхем, указанных в табл. 1, соединена с отрицательным выводом (вывод 3) источника питания, что удобно при однополярном питании микросхемы, поскольку не требует изолирующей прокладки между микросхемой и радиатором. Обратите внимание на то, что с двухполярным источником прокладка необходима.

Входной конденсатор С1 является неполярным электролитическим, а усиление по напряжению определяется уже известным отношением резисторов в цепи обратной связи: Ku=1+R4/R3.

Фильтр нижних частот R1, C2 на входе микросхемы, ограничивает спектр сигналов, тем самым предотвращает появление динамических искажений. Элементы R5, C4 – цепь Зобеля; в непосредственной близости от выводов питания микросхемы устанавливаются пары конденсаторов пленочный плюс оксидный (соответственно С5, С6 и С7, С8), играющие важную роль в обеспечении устойчивой работы усилителя.

Ограничительные диоды VD1, VD2, присоединенные между шинами питания и выходом усилителя в обратной полярности, служат эффективным методом защиты транзисторов выходного каскада микросхемы DA1. В Datasheet рекомендуются выпрямительные диоды общего применения 1N4001, но я на практике убедился, что лучше использовать быстродействующие диоды, например отечественные КД212 .

Анализ данных, приведенных в табл. 1, показывает, что наименьшими искажениями обладает интегральная схема высококачественного звукового усилителя . При напряжении питания ±25 В и нагрузке 4 Ом она может обеспечить выходную мощность 20 Вт с коэффициентом нелинейных искажений 0,015 %. Выберем эту микросхему для реализации нашего проекта.


Рис. 4. Принципиальная схема «студенческого» усилителя Питера Смита
Усилителя мощности имеет следующие параметры:
Номинальная выходная мощность (Rн=4 Ом; 8 Ом), Вт = 20
Рабочий диапазон частот при выходной мощности 1 Вт, Гц = 14…100000
Коэффициент гармоник на частоте 1 кГц при выходной мощности 20 Вт, дБ = -105
Рис. 5. Принципиальная схема блока питания для усилителя Питера Смита

Хотя микросхемы, указанные в табл. 1 просты и удобны в использовании, они требуют тщательной продуманности разводки проводников при разработке печатной платы для обеспечения устойчивой и надежной работы. Печатная плата, спроектированная Питером Смитом представляет собой пример грамотной разводки сильноточных и слаботочных цепей усилителя, и может быть смело рекомендована к повторению (рис. 6), также, как и блок питания (рис. 7).

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 6. Размещение элементов и печатная плата «студенческого» усилителя мощности. Размеры печатной платы – 80х63,5 мм

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Рис. 7. Размещение элементов и печатная плата (90х54,5 мм) блока питания для усилителя Питера Смита

Здесь возник вопрос, требующий пояснения.

Что такое силовая и сигнальная «земля»?

Разберемся с заземлением в УМЗЧ. Следует понимать, что имеются земли двух типов: силовые (токовые) и сигнальные (потенциальные). По первым протекают токи, а по вторым практически нет (малые токи сигнала и смещения в дифференциальном каскаде). Как только в цепь потенциальной земли попадает отрезок токовой земли (иногда достаточно нескольких миллиметров!), возникают помехи и искажения выходного сигнала. Я сталкивался с ситуацией, когда один сантиметр общей сигнальной и силовой земли увеличивал коэффициент гармоник на два порядка – с тысячных долей процента до десятых!

Виновато конечное сопротивление «земляных» шин, которое приводит к тому, что импульсы тока по общему проводу с выхода усилителя могут попасть на его вход.
Существуют три действенных способа борьбы с такими помехами:
- увеличение сечения шин общего провода;
- соединение всех идущих к общему проводу проводников в одной точке;
- гальваническая развязка общего провода входного каскада от шины питания выходных каскадов усилителя.

Последнее возможно в УМЗЧ с дифференциальным каскадом. С общим проводом источника сигнала связаны выводы R1, R2, С2 и С3, см. рис. 4 (сигнальная «земля»). Все остальные проводники, соединенные с общим проводом, подсоединены к силовой «земле». Кстати, некоторые конструкторы используют не две, а три «земли» - сигнальную, промежуточную и силовую. Для предотвращения выхода усилителя из строя при случайном отключении источника сигнала обе земляные шины соединены на плате резистором R6. Его сопротивление выбирают как компромисс между воздействием помех от «силовой» земли и влиянием на глубину отрицательной обратной связи (практический выбор – единицы … десятки Ом).
В случаях, когда сигнальная земля образует замкнутый контур, он играет роль антенны, вызывая появление трудно устранимых наводок.

Вид смонтированного модуля УМЗЧ и блока питания к нему, вынесенный в аннотацию статьи, обязаны усилить желание немедленно самому собрать данную конструкцию.

Оценка площади охлаждающей поверхности радиатора

Микросхема обязательно должна быть установлена на радиаторе – ведь даже в состоянии покоя на ней рассеивается мощность, равная P0=UпI0=(2 25) 0,07=3,5 Вт. Чтобы рассчитать необходимую площадь радиатора, вычислим максимальную рассеиваемую мощность для случая работы в идеальном классе В:
где Uп – полное напряжение источника питания, Rн – сопротивление нагрузки, Р0 – мощность, рассеиваемая в режиме покоя.
При полном напряжении источника питания Uп =50 В, Rн =8 Ом на корпусе микросхемы должна рассеиваться мощность около 19,3 Вт. Ясно, что температура кристалла при работе всегда должна быть ниже 150ºС. Примем температуру окружающего воздуха 53 ºС, тогда тепловое сопротивление переход – окружающая среда должно быть меньше, чем: (150-53)/19,3=5,0 ºС/Вт.

Обычно сумма тепловых сопротивлений корпус – радиатор и радиатор – окружающая среда оказываются меньше, чем 2,0 ºС/Вт. Тепловое сопротивление корпус – радиатор зависит от способа установки микросхемы. Если использовано непосредственное соединение металл – металл, тепловое сопротивление будет примерно 1,0 ºС/Вт при использовании теплопроводной пасты и 1,2 ºС/Вт при ее отсутствии.

При наличии слюдяной прокладки между корпусом и радиатором тепловое сопротивление можно считать равным 1,6 ºС/Вт и 3,4 ºС/Вт соответственно при применении теплопроводной пасты и без нее. Рассмотрим для примера крепление микросхемы к радиатору через слюдяную прокладку с применением теплопроводной пасты. Тепловое сопротивление радиатора должно быть меньше чем 5,0 – 2,0 - 1,6 = 1,4 ºС/Вт. Это рекомендуемое тепловое сопротивление радиатора для данной конструкции.

Полезно оценить результаты расчетов радиатора с помощью какой-нибудь программы, например, . Самый прикидочный расчет площади охлаждающей поверхности радиатора: 20 квадратных сантиметров на каждый ватт рассеиваемой микросхемой мощности.
Для радиаторов, выполненных из алюминиевых сплавов с ребрами не тоньше 3 мм при шаге ребер не менее 10 мм и свободном потоке воздуха площадь радиатора можно оценить следующей приближенной формулой: S[кв см]≈600/Rθр-с[ºС/Вт]=600/1,4=430 кв см.
Как уже указывалось, микросхема снабжена эффективной схемой тепловой защиты. Когда температура кристалла микросхемы достигнет 170 ºС, схема тепловой защиты срабатывает, и усилитель выключается. Включение происходит после понижения температуры кристалла до 145 ºС. Однако, если температура кристалла снова начнет повышаться, то теперь отключение произойдет уже при 150 ºС.

Детали

Ниже приведен список деталей для сборки усилителя .

DA1 – Микросхема – 2 шт.,
R1 - Рез.-0,25-1 м – 2 шт.,
R2, R5 - Рез.-0,25-22 кОм – 4 шт.,
R3, R4 - Рез.-0,25-1 кОм – 4 шт.,
R6 - Рез.-0,25-10 Ом – 2 шт.,
R7 - Рез.-1-1 Ом
C1 - Конд.2,2/16V 0511 NPL – 2 шт. (Рекомендую 2,2/50V или 2,2/63V),
C2 - Конд.NPO 330пф 5%керам.имп. – 2 шт.,
C3 - Конд.22/16V 1016 NPL – 2 шт. (Рекомендую 22/50V или 22/63V),
C4 - Конд.0,22/63V К73-17 – 2 шт.,
C5, C7 - Конд.0,1µ/63V J К73-17(имп.) – 4 шт.,
C6, C8 - Конд.220/35V 1016 +105°C – 4 шт.,
FU1, FU2 – Предохранитель 2,5А – 4 шт.,
Держатель предохранителя 5х20, FH-100 на плату (пара) – 4 шт.,
Клеммник 2К шаг 5 мм на плату ТВ-01А – 4 шт.,
Клеммник 3К шаг 5 мм на плату ТВ-03ВС – 2 шт.,

Детали блока питания
VD1 – VD4 – Диод UF5404 – 4 шт.,
VD5, VD6 – Стабил. 15V 1,3W – 2 шт.,
R1, R2 – Рез.-1-560 Ом – 2 шт.,
C1, C2 – Конд.4700/35V 1840 +105° - 2 шт.,
C3, C4 – Конд.100/16V 0809 105°C – 2 шт. (Рекомендую 100/25V),
Клеммник 3К шаг 5 мм на плату ТВ-03ВС – 3 шт.,
T1 – Трансформатор 80 Вт (Например, тороидальный силовой трансформатор HR типа Т008218, 2х18В, 2,2А) – 1 шт.,
SA1 – Перекл. SC-791, 220V, 15A
FU1 – Предохранитель 1А – 1 шт.
XP1 - Шт."Сеть" CS-001 приб./защёлка – 1 шт.

Подчеркну, что в данном усилителе может быть применена любая из микросхем, указанных в табл. 1. Из этой же таблицы берется напряжение питания усилителя и параметры элементов обвязки (С1, С2, С4, R4 и R7, см. рис. 4).

Усилители, основным назначением которых является усиление сигнала по мощности, называют усилителями мощности. Как правило, такие усилители работают на низкоомную нагрузку, например, громкоговоритель.

жений 3-18 В (номинальное - 6 В) . Максимальный потребляемый ток - 1,5 А при токе покоя 7 мА (при 6 В) и 12 мА (при 18 В). Коэффициент усиления по напряжению 36,5 дБ. на уровне -1 дБ 20 Гц - 300 кГц. Номинальная выходная мощность при коэффициенте нелинейных искажений 10 %

временно отключать звуковое сопровождение. Удвоить выходную мощность TDA7233D можно при их включении по схеме, представленной на рис. 31.42 . С7 предотвращает самовозбуждение устройства в области

высоких частот. R3 подбирают до получения равной амплитуды выходных сигналов на выходах микросхем.

Рис. 31.43. КР174УНЗ 7

КР174УН31 предназначена для использования в качестве выходных маломощных бытовой РЭА.

При изменении напряжения питания от

2.1 до 6,6 В при среднем токе потребления 7 мА (без входного сигнала), коэффициент усиления микросхемы по напряжению меняется от 18 до 24 дБ .

Коэффициент нелинейных искажений при выходной мощности до 100 мВт не более 0,015 %, выходное напряжение шумов не превышает 100 мкВ. Входное микросхемы 35-50 кОм. нагрузки - не ниже 8 Ом. Диапазон рабочих частот - 20 Гц - 30 кГц, предельный - 10 Гц - 100 кГц. Максимальное напряжение входного сигнала - до 0,25-0,5 В.

Если нужно сделать простой, но достаточно мощный УМЗЧ — микросхема TDA2040 или TDA2050 будет наилучшим и недорогим решением. Этот небольшой стереофонический усилитель ЗЧ построен на основе двух всем известных микросхем TDA2030A. По сравнению с классическим включением, в этой схеме улучшена фильтрация питания и оптимизирована разводка печатной платы. После добавления любого предусилителя и блока питания — конструкция идеально подходит для изготовления самодельного домашнего усилителя мощности звука, примерно на 15 Вт (каждый канал). Проект изготовлен на основе TDA2030A, но можно использовать TDA2040 или TDA2050, тем самым раза в полтора увеличивая выходную мощность. Усилитель подходит для динамиков с сопротивлением 8 или 4 Ом. Преимуществом конструкции является то, что она не требует двух-полярного питания, как большинство . Схема отличается хорошими параметрами, легкостью запуска и надежностью в работе.

Принципиальная электрическая схема УНЧ

Усилитель 2x15W ТДА2030 — схема стерео

TDA2030A позволяет спаять усилитель низкой частоты класса AB. Микросхема обеспечивает большой выходной ток, характеризуясь при этом низкими искажениями сигнала. Есть защита встроенная от короткого замыкания, которая автоматически ограничивает мощность до безопасной величины, а также традиционная для таких устройств тепловая защита. Схема состоит из двух одинаковых каналов, работа одного из которых описана далее.

Принцип действия усилителя на TDA2030

Резисторы R1 (100k), R2 (100k) и R3 (100k) служат для создания виртуального нуля усилителя U1 (TDA2030A), а конденсатор C1 (22uF/35V) фильтрует это напряжение. Конденсатор С2 (2,2 uF/35V) отсекает постоянную составляющую — предотвращает попадание постоянного напряжения на вход микросхемы усилителя через линейный вход.

Элементы R4 (4,7k), R5 (100k) и C4 (2,2 uF/35V) работают в петле отрицательной обратной связи и имеют задачу формирования частотной характеристики усилителя. Резисторы R4 и R5 определяют уровень усиления, в то время как C4 обеспечивает усиление в единицу для постоянной составляющей.

Резистор R6 (1R) вместе с конденсатором C6 (100nF) работают в системе, которая формирует характеристику АЧХ на выходе. Конденсатор C7 (2200uF/35V) предотвращает прохождение постоянного тока через динамик (пропуская переменный звуковой сигнал музыки).

Диоды D1 и D2 предотвращают появление опасных напряжений обратной полярности, которые могут возникнуть в катушке динамика и испортить микросхему. Конденсаторы C3 (100nF) и C5 (1000uF/35V) фильтруют питающее напряжение.

Печатная плата УНЧ


Печатная плата УНЧ ТДА2030

Печатную плату можете посмотреть на фотографиях. с чертежами можно в архиве (без регистрации). Что касается сборки — удобно сначала впаять две перемычки на шинах питания. По возможности следует использовать более толстый провод, а не тоненькую ножку от резистора, как часто бывает. Если усилитель будет работать с АС 8 Ом, а не 4 Ома — конденсаторы C7 и C14 (2200uF/35V) могут иметь значение 1000uF.

На фланцы обязательно следует прикрутить радиаторы или один общий радиатор, помня, что корпуса микросхем TDA2030A внутренне связаны с массой.

На печатной плате с успехом можно применять микросхемы TDA2040 или TDA2050 без всяких изменений цоколёвки. Плата была разработана таким образом, чтобы ее можно было при необходимости перерезать в месте, обозначенном пунктирной линией, и использовать только одну половину усилителя с микросхемой U1. На место разъемов AR2 (TB2-5) и AR3 (TB2-5) можете впаивать провода напрямую, если аудио разъёмы закреплены на корпусе усилителя.


Печатная плата усилителя готовая с расположением деталей

Корпус и БП

Блок питания берите или с трансформатором плюс выпрямитель, или готовый импульсный, например от ноутбука. Усилитель необходимо питать не стабилизированным напряжением в пределах 12 — 30 В. Максимальное напряжение питания 35 В, до которого естественно лучше не доходить на пару вольт, мало ли что.

Корпус делать с нуля очень хлопотно, так что проще всего подобрать готовую коробку (металл, пластик) или даже готовый корпус от электронного устройства (ТВ тюнер спутниковый, плеер DVD).

Изготовление хорошего усилителя мощности всегда было одним из нелегких этапов при конструировании аудио-аппаратуры. Качество звучания, мягкость басов и отчетливое звучание средних и высоких частот, детализация музыкальных инструментов - все это пустые слова без качественного усилителя мощности низкой частоты.

Предисловие

Из разнообразия самодельных усилителей НЧ на транзисторах и интегральных микросхемах, которые я изготавливал, лучше из всех себя проявила схема на микросхеме-драйвере TDA7250 + КТ825 , КТ827 .

В данной статье я расскажу как изготовить схему усилителя усилителя, которая отлично подойдет для использования в самодельной аудио-аппаратуре.

Параметры усилителя, пара слов о TDA7293

Основные критерии по которым отбиралась схема УНЧ для усилителя Phoenix-P400:

  • Мощность примерно 100Вт на канал при нагрузке 4Ом;
  • Питание: двуполярное 2 х 35В (до 40В);
  • Небольшое входное сопротивление;
  • Небольшие габариты;
  • Высокая надежность;
  • Быстрота изготовления;
  • Высокое качество звука;
  • Низкий уровень шумов;
  • Небольшая себестоимость.

Достаточно не простое сочетание требований. Сначала опробовал вариант на основе микросхемы TDA7293, но оказалось что это не то что мне нужно, и вот почему...

За все время мне довелось собрать и опробовать разные схемы УНЧ - транзисторные из книг и публикаций журнала Радио, на различных микросхемах...

Хочу сказать свое слово о TDA7293 / TDA7294, поскольку в Интернете о ней написано очень много, и не раз встречал что мнение одного человека противоречит мнению другого. Собрав несколько клонов усилителя на этих микросхемах сделал для себя некоторые выводы.

Микросхемы действительно неплохие, хотя многое зависит от удачной разводки печатной платы (в особенности линий земли), хорошего питания и качества элементов обвязки.

Что меня сразу порадовало в ней - так это достаточно большая отдаваемая в нагрузку мощность. Как для однокристального интегрального усилителя НЧ выходная мощность очень хорошая, также хочу отметить очень низкий уровень шумов в режиме без сигнала. Важно позаботиться о хорошем активном охлаждением микросхемы, поскольку чип работает в режиме "кипятильника".

Что мне не понравилось в усилителе на 7293, так это низкая надежность микросхемы: из нескольких купленных микросхем, в самых разных точках продажи, рабочих осталось только две! Одну спалил перегрузив по входу, 2 сгорели сразу же при включении (похоже что заводской дефект), еще одна почему-то сгорела при повторном 3-м включении, хотя до этого работала нормально и никаких аномалий не наблюдалось... Может просто не повезло.

А теперь, главное из-за чего я не хотел использовать модули на TDA7293 в своем проекте - это заметный моему слуху "металлизированный" звук, в нем не слышно мягкости и насыщенности, немного туповаты средние частоты.

Сделал для себя вывод что этот чип отлично годится для сабвуферов или усилителей НЧ, которые будут бубнеть в багажнике авто или на дискотеках!

Касаться темы однокристальных усилителей мощности далее я не буду, нужно что-то более надежное и качественное, чтобы не так дорого обходилось при опытах и ошибках. Собирать 4 канала усилителя на транзисторах - это хороший вариант, но достаточно громоздкий в исполнении, также он может быть сложен в настройке.

Так на чем же собирать если не на транзисторах и не на интегральных микросхемах? - и на том и на другом, умело скомбинировав их! Будем собирать усилитель мощности на микросхеме-драйвере TDA7250 с мощными составными транзисторами Дарлингтона на выходе.

Схема усилителя мощности НЧ на микросхеме TDA7250

Микросхема TDA7250 в корпусе DIP-20 - это надежный стерео-драйвер для транзисторов Дарлингтона (составные транзисторы с высоким коэффициентом усиления), на основе которого можно построить высококачественный двухканальный стерео-УМЗЧ.

Выходная мощность такого усилителя может достигать и даже превышать 100Вт на канал при сопротивлении нагрузки 4Ом, она зависит от типа используемых транзисторов и напряжения питания схемы.

После сборки экземпляра такого усилителя и первых испытаний, я был приятно удивлен качеством звучания, мощностью и тем как "оживала" музыка издаваемая этой микросхемой в компании с транзисторами КТ825, КТ827. В композициях начали прослушиваться очень мелкие детали, инструменты звучали насыщенно и "легко".

Спалить данную микросхему можно несколькими способами:

  • Переполюсовка линий питания;
  • Превышение уровня максимально допустимого напряжения питания ±45В;
  • Перегрузка по входу;
  • Высоким статическим напряжением.

Рис. 1. Микросхема TDA7250 в корпусе DIP-20, внешний вид.

Даташит (datasheet) на микросхему TDA7250 - (135 КБ).

На всякий случай, я приобрел сразу 4 микросхемы, каждая из которых - это 2 канала усиления. Микросхемы покупались в интернет-магазине по цене примерно 2$ за штучку. На базаре за такую микросхему хотели уже более 5$!

Схема, по которой был собран мой вариант, не во многом отличается от той, которая приведена в даташите:

Рис. 2. Схема стерео-усилителя низкой частоты на микросхеме TDA7250 и транзисторах КТ825, КТ827.

Для этой схемы УМЗЧ был собран самодельный двуполярный блок питания на +/- 36В, с емкостями 20 000 мкФ в каждом плече (+Vs и -Vs).

Детали для усилителя мощности

Расскажу подробнее об особенностях деталей усилителя. Перечень радиодеталей для сборки схемы:

Название Количество, шт Примечание
TDA7250 1
КТ825 2
КТ827 2
1,5 кОм 2
390 Ом 4
33 Ом 4 мощностью 0,5Вт
0,15 Ом 4 мощностью 5Вт
22 кОм 3
560 Ом 2
100 кОм 3
12 Ом 2 мощностью 1Вт
10 Ом 2 мощностью 0,5Вт
2,7 кОм 2
100 Ом 1
10 кОм 1
100 мкФ 4 электролитический
2,2 мкФ 2 слюдяной или пленочный
2,2 мкФ 1 электролитический
2,2 нФ 2
1 мкФ 2 слюдяной или пленочный
22 мкФ 2 электролитический
100 пФ 2
100 нФ 2
150 пФ 8
4,7 мкФ 2 электролитический
0,1 мкФ 2 слюдяной или пленочный
30 пф 2

Катушки индуктивности на выходе УМЗЧ наматываются на каркасе диаметром 10мм и содержат по 40 витков эмалированного медного провода диаметром 0,8-1мм в два слоя (по 20 витков на слой). Чтобы витки не распадались их можно скрепить плавким силиконом или клеем.

Конденсаторы С22, С23, С4, С3, С1, С2 должны быть рассчитаны на напряжение 63В, остальные электролиты - на напряжение от 25В. Входные конденсаторы С6 и С5 - неполярные, пленочные или слюдяные.

Резисторы R16-R19 должны быть рассчитаны на мощность не менее 5Ватт. В моем случае применены миниатюрные цементные резисторы.

Сопротивления R20-R23 , а также RL можно устанавливать мощностью от 0,5Вт. Резисторы Rx - мощностью не менее 1Вт. Все остальные сопротивления в схеме можно ставить мощностью от 0,25Вт.

Пары транзисторов КТ827+КТ825 лучше подбирать с наиболее близкими параметрами, например:

  1. КТ827А (Uкэ=100В, h21Э>750, Pк=125Вт) + КТ825Г (Uкэ=70В, h21Э>750, Pк=125Вт);
  2. КТ827Б (Uкэ=80В, h21Э>750, Pк=125Вт) + КТ825Б (Uкэ=60В, h21Э>750, Pк=160Вт);
  3. КТ827В (Uкэ=60В, h21Э>750, Pк=125Вт) + КТ825Б (Uкэ=60В, h21Э>750, Pк=160Вт);
  4. КТ827В (Uкэ=60В, h21Э>750, Pк=125Вт) + КТ825Г (Uкэ=70В, h21Э>750, Pк=125Вт).

В зависимости от буквы в конце маркировки у транзисторов КТ827 меняются только напряжения Uкэ и Uбэ, остальные же параметры идентичны. А вот транзисторы КТ825 с разными буквенными суффиксами уже разнятся многими параметрами.

Рис. 3. Цоколевка мощных транзисторов КТ825, КТ827 и TIP142, TIP147.

Используемые в схеме усилителя транзисторы желательно проверить на исправность. Транзисторы Дарлингтона КТ825, КТ827, TIP142, TIP147 и другие с высоким коэффициентом усиления, содержат внутри два транзистора, парочку сопротивлений и диод, поэтому обычной прозвонки мультиметром здесь может оказаться не достаточно.

Для проверки каждого из транзисторов можно собрать простую схемку со светодиодом:

Рис. 4. Схема проверки транзисторов структуры P-N-P и N-P-N на работоспособность в ключевом режиме.

В каждой из схем при нажатии кнопки светодиод должен зажечься. Питание можно брать о +5В до +12В.

Рис. 5. Пример проверки работоспособности транзистора КТ825, структуры P-N-P.

Каждую из пар выходных транзисторов нужно обязательно установить на радиаторы, поскольку уже на средней выходной мощности УНЧ их нагрев будет достаточно заметным.

В даташите на микросхему TDA7250 приводят рекомендуемые пары транзисторов и мощность которую можно извлечь используя их в данном усилителе:

При нагрузке 4 Ома
Мощность УНЧ 30 Вт +50 Вт +90 Вт +130 Вт
Транзисторы BDW93,
BDW94A
BDW93,
BDW94B
BDV64,
BDV65B
MJ11013,
MJ11014
Корпуса TO-220 TO-220 SOT-93 TO-204 (TO-3)
При нагрузке 8 Ом
Мощность УНЧ 15 Вт +30 Вт +50 Вт +70 Вт
Транзисторы BDX53,
BDX54A
BDX53,
BDX54B
BDW93,
BDW94B
TIP142,
TIP147
Корпуса TO-220 TO-220 TO-220 TO-247

Крепление транзисторов КТ825, КТ827 (корпус TO-3)

Особое внимание следует обратить на монтаж выходных транзисторов. К корпусу транзисторов КТ827, КТ825 подключен коллектор, потому если корпуса двух транзисторов в одном канале случайно или намеренно замкнуть то получится короткое замыкание по питанию!

Рис. 6. Транзисторы КТ827 и КТ825 подготовлены к монтажу на радиаторы.

Если транзисторы планируется крепить на один общий радиатор, то их корпуса нужно изолировать от радиатора через слюдяные прокладки, предварительно промазав их с обеих сторон термопастой, для улучшения теплообмена.

Рис. 7. Радиаторы, которые были мною использованы для транзисторов КТ827 и КТ825.

Чтобы долго не описывать как можно выполнить изолированный монтаж транзисторов на радиаторы, приведу простой чертеж на котором все подробно показано:

Рис. 8. Изолированное крепление транзисторов КТ825 и КТ827 на радиаторы.

Печатная плата

Теперь расскажу о печатной плате. Развести ее не составит особого труда, поскольку схема почти полностью симметрична по каждому каналу. Нужно стараться максимально отдалить входные и выходные цепи друг от друга - это предотвратит самовозбуждение, множество помех, убережёт от лишних проблем.

Стеклотекстолит можно брать толщиной от 1 до 2х миллиметров, в принципе особой прочности плате и не нужно. После травления дорожки нужно хорошо залудить припоем с канифолью (или флюсом), не игнорируйте этот шаг - это очень важно!

Разводку дорожек для печатной платы я выполнял вручную, на листе бумаги в клеточку с помощью простого карандаша. Так я делал еще с тех времен, когда о SprintLayout и технологии ЛУТ можно было только помечтать. Вот сканированный трафарет рисунка печатной платы для УНЧ:

Рис. 9. Печатная плата усилителя и расположение компонентов на ней (клик - открыть в полный размер).

Конденсаторы С21, С3, С20, С4 - на плате нарисованной вручную отсутствуют, они нужны для фильтрации напряжения по питанию, я их установил в самом блоке питания.

UPD: Спасибо Александру за разводку печатной платы в Sprint Layout!

Рис. 10. Печатная плата для УМЗЧ на микросхеме TDA7250.

В одной из моих статей я рассказал как изготовить эту печатную плату методом ЛУТ .

Скачать печатную плату от Александра в формате *.lay(Sprint Layout) - (71 КБ).

UPD . Привожу здесь другие печатные платы, упоминаемые в комментариях к публикации:

Насчет соединительных проводов по питанию и на выходе схемы УМЗЧ - они должны быть как можно короче и с поперечным сечением не менее 1,5мм. В данном случае, чем меньше длина и больше толщина проводников, тем меньше потерь тока и наводок в схеме усиления мощности.

В результате получились 4 канала усиления на двух маленьких платках:

Рис. 11. Фото готовых плат УМЗЧ для для четырех каналов усиления мощности.

Налаживание усилителя

Правильно собранная и из исправных деталей схема начинает работать сразу. Перед включением конструкции к источнику питания нужно тщательно осмотреть печатную плату на отсутствие замыканий, а также удалить лишнюю канифоль с помощью пропитанного в растворителе кусочка ваты.

Подключать акустические системы к схеме при первом включении и при экспериментах рекомендую через резисторы сопротивлением 300-400 Ом, это спасет динамики от повреждения в случае если что-то пойдет не так.

На вход желательно подключить регулятор громкости - один сдвоенный переменный резистор или же два по отдельности. Перед включением УМЗЧ ставим полузнок раезистора(ов) в левое крайнее положение, как на схеме (минимальная громкость), потом подключив источник сигнала к УМЗЧ и подав на схему питание можно плавно увеличивать громкость, наблюдая как себя поведет собранный усилитель.

Рис. 12. Схематическое изображение подключения переменных резисторов в качестве регуляторов громкости для УНЧ.

Переменные резисторы можно применить любые с сопротивлением от 47 КОм до 200 КОм. В случае использования двух переменных резисторов желательно чтобы их сопротивления были одинаковыми.

Итак, проверяем работоспособность усилителя на небольшой громкости. Если со схемой все хорошо, то плавкие предохранители по линиям питания можно заменить на более мощные (2-3 Ампера), дополнительная защита в процессе эксплуатации УМЗЧ не помешает.

Ток покоя выходных транзисторов можно измерить, включив в разрыв коллектора каждого из транзисторов Амперметр или мультиметр в режиме измерения тока (10-20А). Входы усилителей нужно подключить к общему-земле (полное отсутствие входного сигнала), на выходы усилителей подключить акустические системы.

Рис. 13. Схема включения амперметра для измерения тока покоя выходных транзисторов усилителя мощности звука.

Ток покоя транзисторов в моем УМЗЧ с применением КТ825+КТ827 составляет примерно 100мА (0,1А).

Плавкие предохранители по питанию также можно заменить мощными лампами накаливания. Если какой-то из каналов усилителя поводит себя неадекватно (гул, шум, перегрев транзисторов), то возможно что проблема кроется в длинных проводниках, идущим к транзисторам, попробуйте уменьшить длину этих проводников.

В завершение

На этом пока что все, в следующих статьях расскажу как изготовить блок питания для усилителя, индикаторы выходной мощности, схемы защиты для акустических систем, о корпусе и передней панели...

Аудио редакторы